Explanation-Based Weighted Degree
نویسندگان
چکیده
The weighted degree heuristic is among the state of the art generic variable ordering strategies in constraint programming. However, it was often observed that when using large arity constraints, its efficiency deteriorates significantly since it loses its ability to discriminate variables. A possible answer to this drawback is to weight a conflict set rather than the entire scope of a failed constraint. We implemented this method for three common global constraints (AllDifferent, Linear Inequality and Element) and evaluate it on instances from the MiniZinc Challenge. We observe that even with simple explanations, this method outperforms the standard Weighted Degree heuristic.
منابع مشابه
ROBUSTNESS OF THE TRIPLE IMPLICATION INFERENCE METHOD BASED ON THE WEIGHTED LOGIC METRIC
This paper focuses on the robustness problem of full implication triple implication inference method for fuzzy reasoning. First of all, based on strong regular implication, the weighted logic metric for measuring distance between two fuzzy sets is proposed. Besides, under this metric, some robustness results of the triple implication method are obtained, which demonstrates that the triple impli...
متن کاملNaturalness Mapping of Fereydounshahr County with Respect to Ecotourism, Using Ordered Weighted Averaging Operator
The importance of the economic aspect of tourism usually overshadow many natural tourism destinations. Fereydounshahr county in Isfahan province, with pristine mountainous landscapes and diverse natural features, has high potential to attract many tourists. However, pristineness over much of its area suggests limiting the public access based on the degree of naturalness. Hence, the aim of this ...
متن کاملMULTI-ATTRIBUTE DECISION MAKING METHOD BASED ON BONFERRONI MEAN OPERATOR and possibility degree OF INTERVAL TYPE-2 TRAPEZOIDAL FUZZY SETS
This paper proposes a new approach based on Bonferroni mean operator and possibility degree to solve fuzzy multi-attribute decision making (FMADM) problems in which the attribute value takes the form of interval type-2 fuzzy numbers. We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two interval trapezoidal type-2 fuz...
متن کاملArithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کامل